CORRIGE

Ces éléments de correction n'ont qu'une valeur indicative. Ils ne peuvent en aucun cas engager la responsabilité des autorités académiques, chaque jury est souverain.

BREVET DES COLLÈGES – SESSION 2003 - MATHÉMATIQUES Eléments de correction et proposition de barème

Première partie - Activités numériques : 12 points

Exercice 1	2 points (1,5 + 0,5)	1) $A = 9\sqrt{5}$ et $B = 3\sqrt{5}$ 2) $A \times B = 135$ et $\frac{A}{B} = 3$
Exercice 2	3 points (1 + 2)	1) $\frac{3}{20}$ 2) a) $\frac{3}{5}$ (ou $\frac{3}{4} \times \frac{4}{5}$) b) $\frac{3}{20}$ c) 40 ha
Exercice 3	4 points (1 + 1 + 1 + 1)	1) $E = 4x^2 + 4x - 3$ 2) $E = (2x + 3)(2x - 1)$ 3) Deux solutions : $-\frac{3}{2}$ et $\frac{1}{2}$. 4) $E = 0$ puis $E = -3$.
Exercice 4	3 points (1 + 1 + 1)	1) y = 1,08 x 2) 355,32 euros 3) 500 euros

Deuxième partie -Activités géométriques : 12 points

Exercice 1	5 points 1 + 1 + 1 + 1 + (0,5 + 0,5)	1) figure 2) translation de vecteur 2 \overrightarrow{AB} (ou $\overrightarrow{AB} + \overrightarrow{AB}$, ou \overrightarrow{MP})
Exercice 2	7 points (0,5 + 1,5 + 2 + 1+ 2)	1) figure 2) AB = $\sqrt{5}$ 3) AC ² =50; AB ² +BC ² =5+45=50 4) K ($\frac{3}{2}$; $\frac{1}{2}$) 5) Placement de D; D (4; -2)

Troisième partie - Questions enchaînées: 12 points

1)	3 points (2+1)	Dans le triangle BMN rectangle en M : a) MN ² =BN ² -BM ² =5,76 MN=2,4cm (ou MN=2,4)
		b) cosMBN=3,2/4 ; MBN≈37°.
2)	2 points (1+1)	a) P appartient au cercle de diamètre [AB] donc le triangle BPA est rectangle en P.
		b) Les droites (AP) et (MN), qui sont toutes deux perpendiculaires à la droite (BP), sont parallèles.
3)	3 points (1+1+1)	a) Le coefficient d'agrandissement est $\frac{BA}{BN} = 3.$
		b) BP=3BM d'où BP=9,6cm (ou BP=9,6).
		c) Aire du triangle BMN=
	•	$\frac{1}{2} \times MN \times BM = 3,84 \text{cm}^2$
		Aire du triangle BPA= 3 ² x3,84=34,56cm ²
4)	2 points	Dans le triangle BPO, M appartient à [BP] et E appartient à [BO]. $\frac{BM}{BP} = \frac{1}{3} \qquad \text{et} \qquad \frac{BE}{BO} = \frac{2}{6} = \frac{1}{3}.$
		D'après la réciproque de l'énoncé de Thalès, on en conclut que les droites (PO) et (ME) sont parallèles.
5)	2 points	$\frac{BN}{BO} = \frac{4}{6} = \frac{2}{3}$ (BO) est une médiane du triangle BPK car O est le milieu de [PK]. N est donc le centre de gravité du triangle BPK.
		On en conclut que (PN) est la médiane du triangle BPK issue de P et que I est le milieu de [BK].