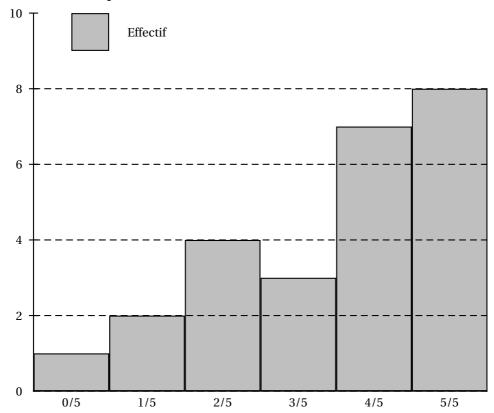
ACTIVITÉS NUMÉRIQUES


12 points

Exercice 1

Dans cet exercice, tous les calculs devront être détaillés.

- 1. Calculer l'expression : $A = \frac{13}{3} \frac{4}{3} \times \frac{5}{2}$ (donner le résultat sous sa forme la plus simple).
- **2.** Donner l'écriture scientifique du nombre B tel que : B = $\frac{7 \times 10^{15} \times 8 \times 10^{-8}}{5 \times 10^{-4}}$.
- **3.** Écrire sous la forme $a\sqrt{7}$ (où a est un entier) le nombre C tel que : $C = 4\sqrt{7} 8\sqrt{28} + \sqrt{700}$.
- **4.** Développer et simplifier : $(4\sqrt{5}+2)^2$.

Exercice 2 (3 points)

Voici l'histogramme des notes d'un contrôle noté sur 5 pour une classe de 25 élèves.

- 1. Reproduire et remplir le tableau des notes suivant.
- 2. Calculer la moyenne des notes de la classe.
- 3. Quelle est la médiane des notes de la classe?
- 4. Calculer la fréquence des notes inférieures ou égales à 3 points sur 5.

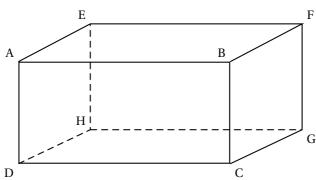
Tableau à reproduire et compléter :

Note	0	1	2	3	4	5
Effectif						
Effectif cumulé croissant						

Exercice 3 (2 points)

Répondre aux questions suivantes. (Les calculs pourront être totalement faits à la calculatrice : on ne demande pas d'étapes intermédiaires ni de justification).

- 1. Donner un arrondi au centième du nombre A tel que : $A = \frac{831 532}{84}$
- 2. Convertir 3,7 heures en heures et minutes.
- 3. Donner un arrondi au millième du nombre B tel que : B = $\frac{\frac{53}{51} \frac{32}{85}}{\frac{63}{34}}$
- **4.** Calculer à 0,01 près $C = \sqrt{\frac{83 + 167}{158}}$.

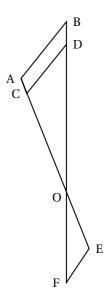

Exercice 4 (3 points)

- 1. Trouver le PGDC de 6 209 et 4 435 en détaillant la méthode.
- 2. En utilisant le résultat de la question précédente, expliquer pourquoi la fraction $\frac{4435}{6209}$ n'est pas irréductible.
- 3. Donner la fraction irréductible égale à $\frac{4435}{6209}$.

ACTIVITÉS GÉOMÉTRIQUES

12 points

Exercice 1 (5 points)


- 1. a. Que peut-on dire des droites (AE) et (AB)? Le justifier.
 - b. Les droites (EH) et (AB) sont-elles sécantes?
- 2. a. Calculer EG. On donnera la valeur exacte.
 - **b.** En considérant le triangle EGC rectangle en G, calculer la valeur exacte de la longueur de la diagonale [EC] de ce parallélépipède rectangle.
- **3.** Montrer que le volume de ABCDEFGH est égal à 72 m³.
- **4.** Montrer que l'aire totale de ABCDEFGH est égale à 108 m².

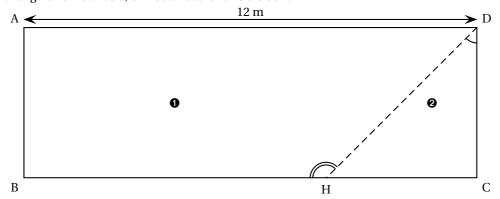
Exercice 2 (3 points)

Sur le dessin ci-contre, les droites (AB) et (CD) sont parallèles, les points A, C, O, E sont alignés ainsi que les points B, D, O et F. (On ne demande pas de faire le dessin).

De plus, on donne les longueurs suivantes : CO = 3 cm, AO = 3.5 cm, OB = 4.9 cm, CD = 1.8 cm, OF = 2.8 cm et OE = 2 cm.

- 1. Calculer (en justifiant) OD et AB.
- **2.** Prouver que les droites (EF) et (AB) sont parallèles.

Exercice 3 (4 points)


Soit ABC un triangle tel que AB = 4,2 cm, BC = 5,6 cm, AC = 7 cm.

- 1. Faire une figure en vraie grandeur.
- 2. Prouver que ABC est rectangle en B.
- 3. Calculer le périmètre et l'aire de ABC.

ACTIVITÉS GÉOMÉTRIQUES

12 points

On dispose d'un séjour rectangulaire dans lequel on veut réaliser un petit cagibi triangulaire. Pour cela, on veut installer une cloison.

Voici ci-dessus, une représentation de la pièce.

La partie **②** est le cagibi et la partie **①** représente le séjour après la création du cagibi. La cloison a été dessinée en pointillés.

Dans l'exercice, on considérera que la cloison a une épaisseur nulle.

Les trois parties sont indépendantes.

Partie 1 (3 points)

On considère que x = 3 m.

- 1. Quelle est la longueur de la cloison (en pointillé)?
- 2. Calculer la valeur (à 1° près) de l'angle HDC?
- **3.** Calculer la valeur (à 1° près) de l'angle DHB?

Partie 2 (6 Points)

- **1. a.** Exprimer la surface au sol du cagibi **2** en fonction de x, sous la forme f(x) = ...
 - **b.** Exprimer la surface au sol du séjour \bullet en fonction de x, sous la forme g(x) = ...
- **2.** On admet que f(x) = 2x et que g(x) = 48 2x.
 - **a.** Quelle est la nature de la fonction f ? Quelle est la nature de la fonction g ?
 - **b.** Tracer dans un repère (abscisse : 1 cm pour 0,5 unités et en ordonnées, 1 cm pour 5 unités) les représentations graphiques des fonctions f et g pour x compris entre 0 et 10.
- **3.** On veut que le séjour **0** ait une surface minimale de 35 m².
 - **a.** Lire sur le graphique la valeur maximale de *x* pour que cette condition soit respectée.
 - **b.** Écrire une inéquation qui traduise que la surface du séjour doit être supérieure ou égale à 35 m².
 - c. Résoudre cette inéquation.

Partie 3 (3 Points)

On réalise une maquette de cette pièce, avant la création du cagibi, à l'échelle 1/200.

- 1. Rappeler ce que signifie « échelle 1/200 »?
- 2. Quelle sera, sur la maquette, la longueur du mur de 12 m?
- **3.** La surface réelle du séjour est de 48 m^2 . Quelle est la surface du sol du séjour dans la maquette (en cm²)?
- **4.** Le volume du séjour de la maquette est de 13,125 cm³. Quel est le volume réel du séjour (en cm³ puis en m³)?